Ex. 1) $\quad \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{NaOH} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{NaNO}_{3}$
First make a list of all of the elements on each side and their amounts.

1 Cr	1 Cr
3 N	1 N

(one N X 3)
$9+1=100$
(3 O’s X 3) + 1 O in NaOH
1 Na
1 H
$3+3=60$
$\left(1 \mathrm{O}\right.$ X 3) +3 O’s in NaNO_{3}
1 Na
3 H
(1 H X3)

Either the N or the H needs fixed. Do not fix the oxygen, since they are everywhere.
$3 \mathrm{~N} \quad \underline{\mathbf{3}}(1 \mathrm{~N})=3 \mathrm{~N}$
Multiply the 1 N by 3 to get three total on each side.
The 3 that is multiplied goes in the front of the compound containing the N .

$$
\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{NaOH} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+\underline{\mathbf{3}} \mathrm{NaNO}_{3}
$$

This 3 we added will now be multiplied through the compound: $3 \mathbf{X} 1 \mathrm{Na}=3 \mathrm{Na}$, $\underline{3 \times 1 N=3 N, 3 \times 30 ' s=90 .}$

Again make a list of all elements and their amounts.
$\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{NaOH} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+\underline{\mathbf{3}} \mathrm{NaNO}_{3}$

1 Cr
3 N
(one N X 3)
$9+1=100$
1 Cr
3 N
(3 X 1 N)
$3+9=120$
(3 O's X 3) +1 O in NaOH
(1 O X 3) + (3 X 3 O’s)
1Na
3 Na
(3 X 1 Na)
1 H

3 H
(1 H X3)

Either the Na or the H need fixed, O should be saved for last, since it is everywhere. Multiply the Na by 3, so there will be 3 on each side.

$$
\underline{\mathbf{3}}(1 \mathrm{Na})=3 \mathrm{Na} \quad 3 \mathrm{Na}
$$

The 3 that is multiplied goes in the front of the compound.

$$
\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}+\underline{3} \mathrm{NaOH} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+3 \mathrm{NaNO}_{3}
$$

This 3 we added will now be multiplied through the compound: $3 X 1 \mathrm{Na}=3 \mathrm{Na}$, $\underline{3 \times 10=30,3 \times 1 H=3 H}$.

1 Cr	1 Cr
3 N	3N
$9 \mathrm{O}+3 \mathrm{O}=12 \mathrm{O}$	$30+9 \mathrm{O}=120$
3 Na	3 Na
3 H	$\mathbf{3 H}$ balanced

Ex. 2) $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{AlI}_{3} \rightarrow \mathrm{NaI}+\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
$2 \mathrm{Na} \quad 1 \mathrm{Na}$
1 C 3 C
30
($1 \mathrm{CX} 3=3$) 90

1 Al
(3 O's X $3=9$)
2 Al
3 I
1 I
Fix either Na or Al first. (Start with the positive metals and then move to other elements.) To fix Na we need to multiply by 2 on the right side.

2 Na

$$
\underline{\mathbf{2}}(1 \mathrm{Na})=2 \mathrm{Na}
$$

The 2 that is multiplied goes in the front of the compound.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{AlI}_{3} \rightarrow \underline{\mathbf{2}} \mathrm{NaI}+\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}
$$

This 2 we added will now be multiplied through the compound: $2 X 1 \mathrm{Na}=2 \mathrm{Na}$, $\underline{2 X 1 I-2 I .}$

2 Na	2 Na
1 C	3 C
3 O	9 O
1 Al	2 Al
3 I	2 I

Now let's fix Al, by multiplying the left Al by 2.

$$
\underline{\mathbf{2}}(1 \mathrm{Al})=2 \mathrm{Al} \quad 2 \mathrm{Al}
$$

The 2 that is multiplied goes in the front of the compound.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+\underline{\mathbf{2}} \mathrm{AlI}_{3} \rightarrow 2 \mathrm{NaI}+\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}
$$

This 2 we added will now be multiplied through the compound: 2×1 Al $=2 \mathrm{Al}$, $\underline{2 \times 3 I=6 I .}$

2 Na	2 Na
1 C	3 C
3 O	9 O
2 Al	2 Al
6 I	2 I

Next fix C or O or I . If we fix C , we need to multiply the C on the left by 3 .

$$
\underline{\mathbf{3}}(1 \mathrm{C})=3 \mathrm{C} \quad 3 \mathrm{C}
$$

The 3 that is multiplied goes in the front of the compound.
This 3 we added will now be multiplied through the compound: $3 \times 2 \mathrm{Na}=6 \mathrm{Na}$, $\underline{3 X 1 C=3 C, 3 \times 30=90 .}$

$$
\begin{array}{cl}
\underline{\mathbf{3}} \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{AlI}_{3} \rightarrow 2 \mathrm{NaI}+\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3} \\
& 2 \mathrm{Na} \\
6 \mathrm{Na} & 3 \mathrm{C} \\
3 \mathrm{C} & 9 \mathrm{O} \\
9 \mathrm{O} & 2 \mathrm{Al} \\
2 \mathrm{Al} & 2 \mathrm{I}
\end{array}
$$

Now fix either the Na or the I. We already have a 2 in front of NaI, which is not working. We have two choices. We can either multiply that 2 by some number to fix it or we can get rid of the 2 and put a number there that works. ${ }^{* *}$ We can get rid of the 2 in front of the NaI, since it is not part of the compound. (We put that number there back in the $\mathbf{1}^{\text {st }}$ step, so we can change it.) ** In this case it will probably be easier to multiply the 2 by 3 making 6 , which will fix both the Na and the I.

$$
\begin{gathered}
6 \mathrm{Na} \begin{array}{l}
3(2 \mathrm{Na})=6 \mathrm{Na} \\
3 \mathrm{X} 2=\underline{\mathbf{6}} \text { and this } \underline{\mathbf{6}} \text { needs to go in front of the } \mathrm{NaI}
\end{array} \\
3 \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{AlI}_{3} \rightarrow \underline{\mathbf{6}} \mathrm{NaI}+\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}
\end{gathered}
$$

6 Na	6 Na	
3 C	3 C	
9 O	9 O	
2 Al	2 Al	
6 I	6 I	It is now balanced!

Counting with parenthesis:
$3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$3 \mathrm{X} 1 \mathrm{Ca}=3 \mathrm{Ca}$
$3 \mathrm{X}(1 \mathrm{~N} \mathrm{X} 2=2 \mathrm{~N}$ inside the parenthesis)
$3 \mathrm{X} 2=6 \mathrm{~N}$ total
3 X (3 Oxygen X $2=6$ Oxygen inside the parenthesis)
3 X $6=18$ Oxygen total

End of Notes

