Step by Step: Balancing Chemical Reactions

Ex. 1) $Cr(NO_3)_3 + NaOH \rightarrow Cr(OH)_3 + NaNO_3$

First make a list of all of the elements on each side and their amounts.

1 Cr	1 Cr
3 N	1 N
(one N X 3)	
9 + 1 = 10 O	3 + 3 = 6 O
(3 O's X 3) + 1 O in NaOH	$(1 \text{ O X } 3) + 3 \text{ O's in NaNO}_3$
1 Na	1 Na
1 H	3 H
	(1 H X3)

Either the N or the H needs fixed. Do not fix the oxygen, since they are everywhere.

 $3 N \qquad \underline{3}(1 N) = 3 N$ Multiply the 1 N by 3 to get three total on each side. The 3 that is multiplied goes in the front of the compound containing the N.

$Cr(NO_3)_3 + NaOH \rightarrow Cr(OH)_3 + \underline{3} NaNO_3$ <u>This 3 we added will now be multiplied through the compound: 3 X 1Na = 3 Na,</u> <u>3 X 1N = 3 N, 3 X 3O's = 9 O.</u>

Again make a list of all elements and their amounts.

$Cr(NO_3)_3 + NaOH \rightarrow Cr(OH)_3 + \underline{3} NaNO_3$		
1 Cr		
3 N		
(3 X 1 N)		
3 + 9 = 12 O		
(1 O X 3) + (3 X 3 O's)		
3 Na		
(3 X 1 Na)		
3 H		
(1 H X3)		

Either the Na or the H need fixed, O should be saved for last, since it is everywhere. Multiply the Na by 3, so there will be 3 on each side.

 $\underline{3}(1Na) = 3 Na$ 3 Na The 3 that is multiplied goes in the front of the compound.

$$Cr(NO_3)_3 + \underline{3} NaOH \rightarrow Cr(OH)_3 + 3 NaNO_3$$

chemistrynoteslecture.com © 2011

This 3 we added will now be multiplied through the compound: 3×1 Na = 3 Na, 3×1 O = 3 O, 3×1 H = 3 H.

1 Cr	1 Cr	
3 N	3N	
9 O + 3 O= 12 O	3 O + 9 O	= 12 O
3 Na	3 Na	
3 H	3 H	balanced

Ex. 2) $Na_2CO_3 + AlI_3 \rightarrow NaI + Al_2(CO_3)_3$

2 Na	1 Na
1 C	3 C
	(1 C X 3 = 3)
30	9 O
	(3 O's X 3 = 9)
1 Al	2 A1
3 I	1 I

Fix either Na or Al first. (Start with the positive metals and then move to other elements.) To fix Na we need to multiply by 2 on the right side.

2 Na 2 (1 Na) = 2 Na

The 2 that is multiplied goes in the front of the compound.

 $Na_2CO_3 + AlI_3 \rightarrow \underline{2} NaI + Al_2(CO_3)_3$

<u>This 2 we added will now be multiplied through the compound: 2×1 Na = 2Na, 2×1 I = 2I.</u>

2 Na	2 Na
1 C	3 C
3 O	9 O
1 Al	2 Al
3 I	2 I

Now let's fix Al, by multiplying the left Al by 2.

$$\underline{2}$$
 (1 Al) = 2 Al 2 Al

The 2 that is multiplied goes in the front of the compound.

chemistrynoteslecture.com © 2011

 $Na_2CO_3 + 2AII_3 \rightarrow 2NaI + Al_2(CO_3)_3$

This 2 we added	will now be	multiplied	through t	the compound:	2 X 1 Al = 2 Al,
<u>2 X 3 I = 6 I.</u>					

2 Na	2 Na
1 C	3 C
3 O	9 O
2 Al	2 Al
6 I	2 I

Next fix C or O or I. If we fix C, we need to multiply the C on the left by 3.

 $\underline{3}(1C) = 3C$ 3C

The 3 that is multiplied goes in the front of the compound.

This 3 we added will now be multiplied through the compound: $3 \times 2Na = 6 \times Na$, 3 X 1 C = 3 C, 3 X 3 O = 9 O.

 $\begin{array}{ccc} \underline{\mathbf{3}} \operatorname{Na_2CO_3} + 2 \operatorname{AlI_3} \rightarrow 2 \operatorname{NaI} &+ \operatorname{Al_2(CO_3)_3} \\ & & 6 \operatorname{Na} & & 2 \operatorname{Na} \\ & & 3 \operatorname{C} & & 3 \operatorname{C} \\ & & 9 \operatorname{O} & & 9 \operatorname{O} \\ & & 2 \operatorname{Al} & & 2 \operatorname{Al} \end{array}$

2 I

Now fix either the Na or the I. We already have a 2 in front of NaI, which is not working. We have two choices. We can either multiply that 2 by some number to fix it or we can get rid of the 2 and put a number there that works. <u>**We can get rid of the 2 in front of the</u> <u>NaI, since it is not part of the compound. (We put that number there back in the 1st</u> <u>step, so we can change it.) **</u> In this case it will probably be easier to multiply the 2 by 3 making 6, which will fix both the Na and the I.

6 Na
$$3(2 \text{ Na}) = 6 \text{ Na}$$

3 X 2 = 6 and this 6 needs to go in front of the NaI

$$3 \operatorname{Na_2CO_3} + 2 \operatorname{All_3} \rightarrow \underline{\mathbf{6}} \operatorname{NaI} + \operatorname{Al_2(CO_3)_3}$$

chemistrynoteslecture.com © 2011

6 I

6 Na	6 Na	
3 C	3 C	
90	9 O	
2 Al	2 Al	
6 I	6 I	It is now balanced!

Counting with parenthesis:

3 Ca(NO₃)₂

3 X 1 Ca = 3 Ca

- 3 X (1 N X 2 = 2N inside the parenthesis) 3 X 2 = 6 N total
- 3 X (3 Oxygen X 2 = 6 Oxygen inside the parenthesis) 3 X 6 = 18 Oxygen total

End of Notes